
JVC

SERVICE MANUAL CASSETTE RECEIVER

KS-FX8R

Area Suffix
E ---- Continental Europe

Contents

Safety precaution	1-2
Disassembly method	1-3
Adjustment method	1-10
Description of major ICs	1-14

Safety precaution

↑ CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

Disassembly method

■Removing the front panel unit

(See Fig.1)

1. Press the release switch and remove the front panel unit in the direction of the arrow.

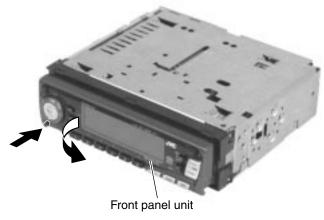
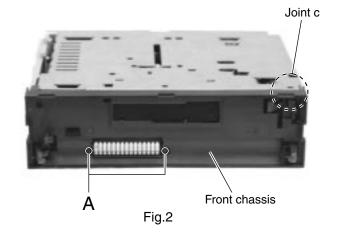



Fig.1

■ Removing the front chassis (See Fig.2~3)

- 1. Remove the two screws A attaching the front chassis.
- 2. Insert a screwdriver to the two joints **a** on the left side of the front chassis, two joints **b** on the right side and one joint **c** from upside, then detach the front chassis toward the front side.

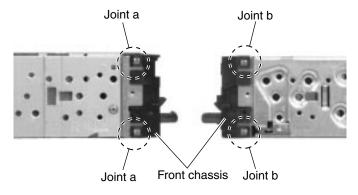


Fig. 3

■Removing the heat sink (See Fig.4)

1. Remove the three screws **B** attaching the heat sink on the left side of the body, and remove the heat sink.

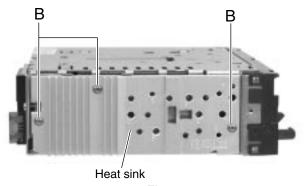


Fig. 4

■ Removing the bottom cover (See Fig.5)

- Prior to performing the following procedure, remove the front chassis and the heat sink.
- 1. Turn the body upside down.
- Insert a screwdriver to the two joints d and two joints e on both sides of the body and the joint f on the back of the body, then detach the bottom cover from the body.

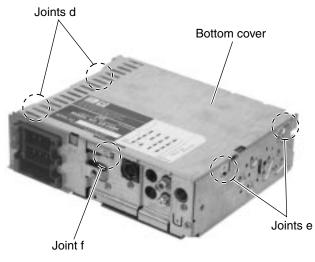


Fig. 5

■ Removing the rear panel (See Fig.6)

- Prior to performing the following procedure, remove the front chassis, the heat sink and bottom cover.
- Remove the five screws C attaching the rear panel and one screw D attaching the pine jack on the back of the body.

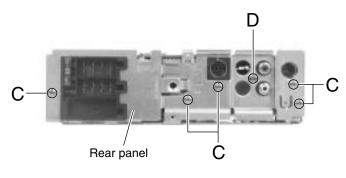


Fig. 6

■ Removing the main amplifier board assembly (See Fig.7)

- Prior to performing the following procedure, remove the front chassis, the heat sink, bottom cover and the rear panel.
- 1. Remove the two screws **E** attaching the main amplifier board assembly on the top cover.
- 2. Disconnect connector CP401 on the main amplifier board assembly from the cassette mechanism assembly.

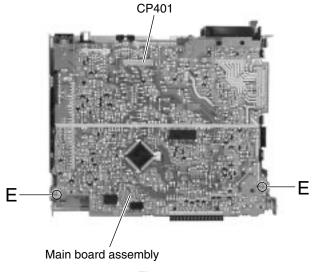
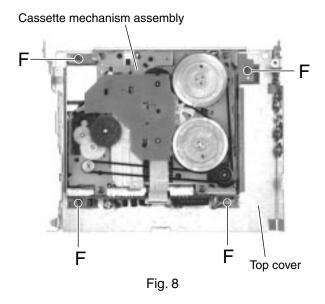
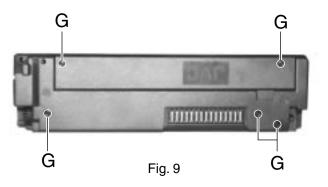
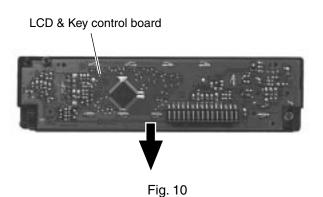



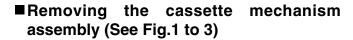
Fig. 7


■ Removing the cassette mechanism assembly (See Fig.8)


- Prior to performing the following procedure, remove the front chassis, the heat sink, bottom cover and the main amplifier board assembly.
- 1. Remove the four screws **F** attaching the cassette mechanism assembly from the top cover.

■ Removing the (LCD & key) control switch board (See Fig.9 and 10)

- 1. Remove the front panel unit from the main body.
- 2. Remove the five screws **G** attaching the rear cover on the back of the front panel unit.
- 3. Remove the control switch board from the front panel unit.



<Removal of the cassette mechanism>

■ Removing the head amplifier board. (See Fig.1 and 2)

- 1. For the 6pin wire extending from connector CN402 on the head amplifier board, disconnect it from the head relay board.
- 2. Disconnect the card wire from connector CN403 on the head amplifier board.
- Remove the screw A attaching the head amplifier board.
- 4. Move the tab **a** as shown in Fig.2 and remove the head amplifier board while moving it in the direction of the arrow.

- 1. Disconnect the 6pin wire from connector CN402 and the card wire from CN403 on the head amplifier board (Refer to Fig.1 and 2).
- Remove the four screws B on the bottom of the cassette mechanism.

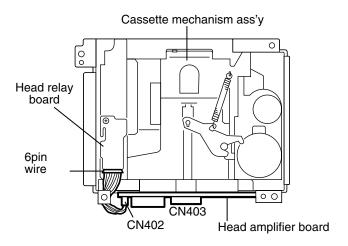
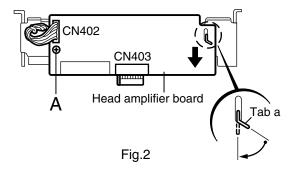



Fig.1

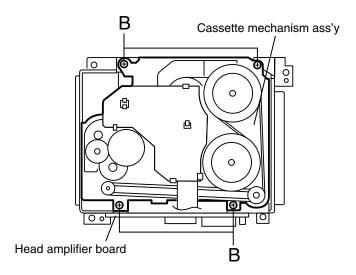
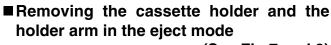


Fig.3

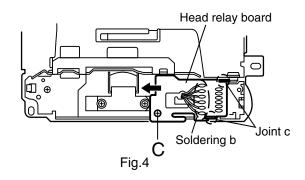
■ Removing the head relay board

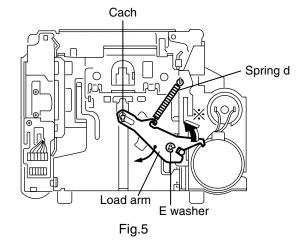
(See Fig.4)

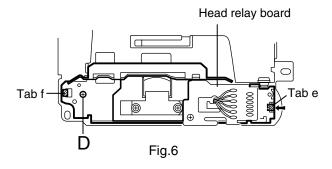

- 1. Unsolder the soldering **b** on the head relay board.
- 2. Remove the screw **C** attaching the head relay board.
- 3. Remove the head relay board in the direction of the arrow while releasing the two joints **c**.

■ Removing the load arm (See Fig.5)

- Remove the E washer attaching the load arm using a pincette or something like that and remove the spring d.
- Move the part of the load arm marked * upwards to release it from the axis of rotation. Then rotate the load arm in the direction of the arrow to remove it from the cach.




- Prior to performing the following procedure, remove the head relay board.
- 1. Remove the screw **D** attaching the sub chassis.
- 2. Push the tab **e** in the direction of the arrow to detach the one side of the sub chassis. Then release the sub chassis from the tab **f**.



(See Fig.7 and 8)

- Prior to performing the following procedure, remove the head relay board, the load arm and the sub chassis.
- 1. Remove the screw **E** attaching the reinforce bracket.
- 2. Remove the reinforce bracket.
- 3. Push the tab **g** fixing the cassette holder in the direction of the arrow and open the cassette holder and the holder arm upward until they stop at an angle of 45 degrees. Move the two joints **h** to the side and remove the cassette holder and the holder arm from the shaft.

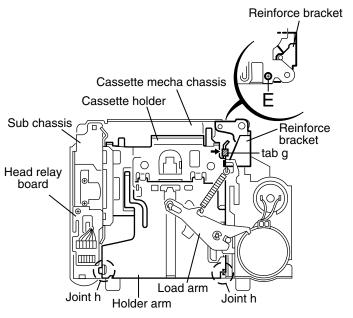
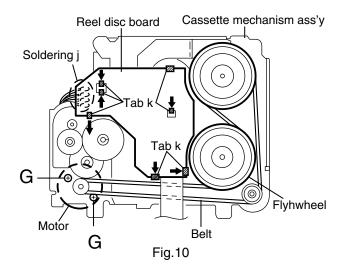


Fig.7

■ Removing the flywheel


(See Fig.10 and 12)

- 1. Prior to performing the following procedure, remove the head relay board, the load arm, the sub chassis, the cassette holder, the holder arm and the reel disc board.
- 2. Remove the belt on the bottom of the cassette mechanism ass'y.
- Remove the slit washer attaching the flywheel on the upper side of the cassette mechanism ass'y and pull out the flywheel downward. Then remove another flywheel in the same way.

ATTENTION: When reassembling, make sure to use a new slit washer.

■Removing the reel disc ass'y(I) (See Fig.12 to 14)

- Prior to performing the following procedure, remove the head relay board, the load arm, the sub chassis, the cassette holder and the holder arm.
- Disengage the part n inside of the reel driver which engages with the shaft, using a pincette or something like that. Then remove the reel driver from the shaft.
- 2. Remove the reel driver spring and the reel table.

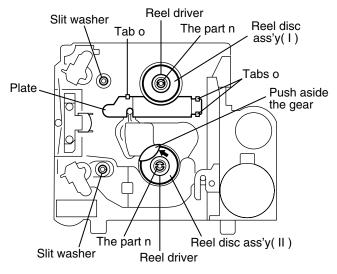
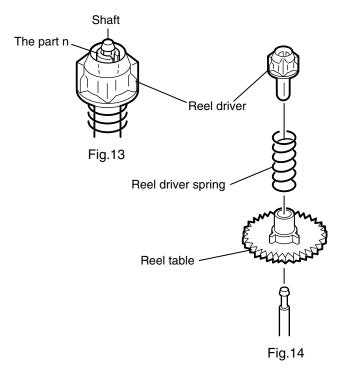



Fig.12

■Removing the reel disc ass'y(II) (See Fig.12 to 15)

ATTENTION: Prior to performing the following procedure, remove the reel disc (I).

- 1. Release the plate from the three tabs \boldsymbol{o} .
- 2. Push aside the gear over the reel table using a pincette or something like that.
- 3. Remove the reel disc ass'y (\mbox{II}) as with the reel disc ass'y (\mbox{I}).

ATTENTION: Do not break the front panel tab fitted to the metal cover.

Push aside the gear and reattach the reel disc Ass'y(I).

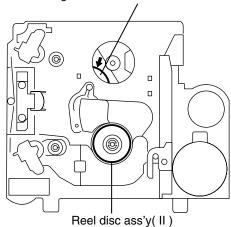


Fig.15

Adjustment method

■Test Instruments reqired for adjustment

- 1. Digital osclloscope(100MHz)
- 2. Frequency Counter meter
- 3. Electric voltmeter
- 4. Wow & flutter meter
- 5. Test Tapes

■ Measuring conditions (Amplifier section)

Power supply voltage	DC14.4V (10.5 - 16V)
Load impedance	4 Ω (2Speakers connection)
Line out	20kΩ

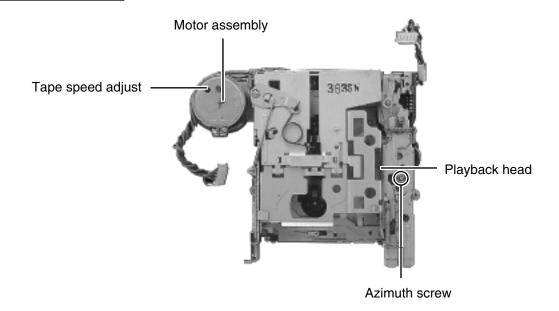
■Standard volume position

Balance and Bass,Treble volume .Fader :Center(Indication"0") Loudness,Dolby NR,Sound,Cruise:Off Volume position is about 2V at speaker output with following conditions.Playback the test tape VT721.

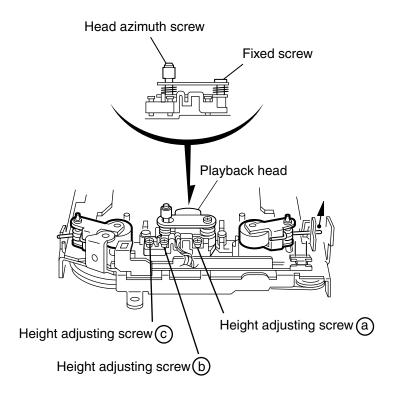
AM mode 999kHz/62dB,INT/400Hz,30%

modulation signal on recieving.

FM mono mode 97.9MHz/66dB,INT/400Hz,22.5kHz


deviation pilot off mono

FM stereo mode 1kHz,67.5kHz dev. pilot7.5kHz dev.


Output level $0dB(1\mu V,50 \Omega / open terminal)$

■ Arrangement of adjusting & test points

Cassette mechanism (Surface)

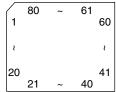
Head section view

■Information for using a car audio service jig

- 1. For 1995 and 1996, we're advancing efforts to make our extension cords common for all car audio products. Please use this type of extension cord as follows.
- 2. As a U-shape type top cover is employed, this type of extension cord is needed to check operation of the mechanism assembly after disassembly.
- 3. Extension cord : EXTKSRT002-6P (6 pin extension cord) For connection between mechanism assembly and main board assembly.
 - Check for mechanism driving section such as motor ,etc..

■Disassembly method

- 1. Remove the bottom cover.
- 2. Remove the front panel assembly. Cassette mechanism 3. Remove the top cover. 4. Install the front panel. 5. Confirm that current is being carried by connecting an extension cord jig. Note Available to connect to the CN701 connector when installing the front panel. Extension cord : EXTKSRT002-6P Main board Front panel assembly

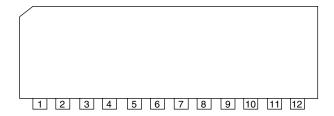

EXTKSRT002-6P

■Mechanism adjustment section

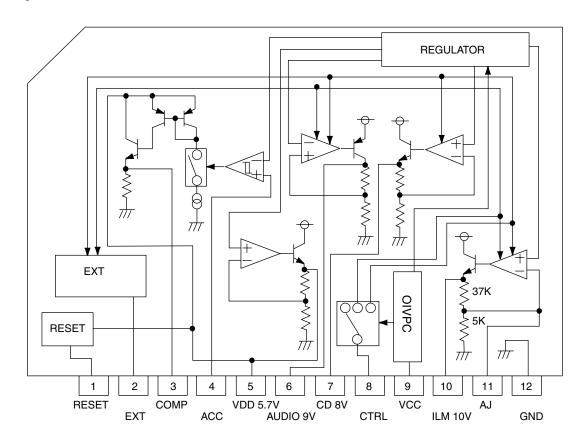
Item	Adjusting & Confirmation Methods	Adjust	Std. Value
1.Head azimuth	"Head Height Adjustment" Note Adjust the azimuth directly. When you adjust the height using a mirror tape, remove the cassette housing from the mechanism chassis. After installing the cassette housing, perform the azimuth adjustment.	Head shield	A Line
	 1.load the mirror tape (SCC-1659). Adjust with height adjustmentscrew (a) and azimuth adjustment screw (b) so that line "A" of the mirror tape runs in the center between Lch and Rch in the reverse play mode. 2.After switching from REV to FWD then to REV, check that the head position set in procedure "1" is not changed. *If the position has shifted, adjust again and check. 3.Adjust the azimuth screw (b) so that line "B" of the mirror 	The head is at during FWD.	low position B Line
	tape runs in the center between Lch and Rch in the forward play mode.	Head shield The head is at h during REV.	eight position
	"Head Azimuth Adjustment" 1. Load the test tape (VT724: 1kHz) and play it back in the reverse play mode. set the Rch output level to maximum. 2. Load the test tape (VT703: 10kHz) and play it back in the forward play mode. Adjust the Rch and Lch output levels tomaximum, with azimuth adjustment screw (b). In this case, the phase difference should be within 45°. 3. Engage the reverse mode and adjust the output level to maximum, with azimuth adjustment screw (c). *The phase difference should be 45_Kor more. 4. When switching between forward and reverse modes, the difference between channels should be within 3dB. *Between FWD Lch and Rch, REV Lch and Rch. 5. When the test tape (VT721: 315Hz) is played back, the level difference between channels should be within 1.5dB.	Head azimuth screw screw (c) screw (b) 0° Phase	screw (a)
2.Tape Speed and Wow & Flutter	1.Check to see if the reading of the frequency counter & Wow flutter meter is within 2940-3090 Hz(FWD/REV), and less than 0.35% (JIS RMS). 2.In case of out of specification, adjust the motor with a built-in volume resistor.	Built-in volume resistor	Tape Speed 2940-3090Hz Wow&Flutter Less than 0.35% (JIS RMS)
3.Playback Frequency response	 Play the test tape (VT724: 1kHz) back and set the volume position at 2V. Play the test tape (VT739) back and confirm 0 ± 3dB at1kHz/8kHz and -4+2dB at 1kHz/125Hz. When 8kHz is out of specification, it will be necessary to read adjust the azimuth. 		Speaker out 1kHz/8kHz : 0dB_}3dB, 125Hz/1kHz : -4dB+2dB,

Description of major ICs ■ UPD178018AGC-551 (IC701): Main system control CPU

1. Pin layout


2. Pin function

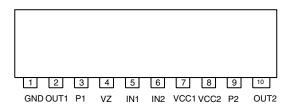
Pin No.	Port Name	I/O	Descriptions	
1	KEY 0	I	Key input 0	
2	KEY 1	ı	Key input 1	
3	KEY 2	ı	Key input 2	
4	LEVEL	ı	Level meter input	
5	SM	ı	S.meter level input	
6	SQ	ı	S.Quality level input	
7	LCDCE	0	CE output to LCD driver	
8	LCDDA	0	Data output to LCD driver	
9	LCDSCK	0	Clock output to LCD driver	
10	BUSI/O	I	I/O selector output for J-BUS, H : OUT, L: INPUT	
11	UNLOCK	-	Non connect	
12	BUSSI	I	J-BUS Data input	
13	BUSSO	0	J-BUS Data output	
14	BUSSCK	I/O	J-BUS Clock in/output	
15	NC	-	Non connect	
16	NC	-	Non connect	
17	NC	-	Non connect	
18	NC	-	Non connect	
19	NC	-	Non connect	
20	NC	-	Non connect	
21	GNDPORT	-	Port GND	
22	VDDPORT	-	Port Vdd	
23	AM	0	Non connect	
24	AFCK	0	AF check output, L: AF check	
25	MONO	0	Monaural on /off selecting output, H:mono on	
26	FM	0	FM/AM switching output L:FM H:AM	
27	SEEK/STP	0	Auto seek /stop selecting output, H: Seek, L:Stop	
28	NC	I	Pulse signal input port for Cruise control	
29	IFC	ı	FM/AM midle frequency counter input	
30	VDDPLL	-	PLL Vdd	
31	FMOSC	I	FM/AM limited generator frequency input	
32	AMOSC	-	None connect	
33	GNDPLL	-	PLL GND	
34	AMEO	0	AM error out output	
35	FMEO	0	FM error out output	
36	IC	-	GND	
37	SD/ST	I	Station detector, Stereo signal input, H:Find Station, L:Stereo	
38	STAGE0	I	Pull up	
39	NC	-	Non connect	
40	F/R	0	Main motor output	


Pin No.	Port Name	I/O	Descriptions		
41	NC	-	Non connect		
42	NC	-	Non connect		
43	TELMUTE	0	Telephone mute signal detection input		
44	TAPEIN	I	TAPE input		
45	I2CCLK	0	I2C information clock output		
46	I2CDAO	0	I2C information data output		
47	I2CDAI	I	I2C information clock input		
48	NC	-	Non connect		
49	NC	-	Non connect		
50	NC	-	Non connect		
51	NC	-	Non connect		
52	NC	-	Non connect		
53	NC	-	Non connect		
54	NC	-	Non connect		
55	TAPE	-	Non connect		
56	TUNER	-	Non connect		
57	CD	-	Non connect		
58	NC	-	Non connect		
59	NC	-	Non connect		
60	MUTE	0	Mute output		
61	POWER	0	Power ON /OFF switching output , H: power on		
62	NC	-	Non connect		
63	NC	-	Non connect		
64	NC	-	Non connect		
65	NC	-	Non connect		
66	NC	-	Non connect		
67	ON	I	CPU power supply		
68	STOP	0	STOP signal output terminal		
69	RDSCK	I	Clock input for RDS		
70	RDSDA	I	RDS data input		
71	REMOCON	I	Remocom input		
72	DETACH	I	Detach signal input H: Power save		
73	BUSINT	I	Cut-in input for J-BUS signal		
74	REGCPU	-	Regulator for CPU power supply, Connect the GND with 0.1 μ F.		
75	GND	-	Ground		
76	X2	-	Connecting the crystal oscillator for system clock		
77	X1	I	Connecting the crystal oscillator for system clock		
78	REGOSC	-	Regulator for oscillator circuit. Connect the GND with 0.1 μ F.		
79	VDD	-	Vdd		
80	RESET	-	Pull up		

■ BA4905-V3 (IC901) : Regulator

1.Pin layout

2.Block diagram



3.Pin function

		DA4303-10
1	RESET	If VDD voltage becomes 4V or less, RESET output becomes low level.
		This outout voltage is approximately 0.5V lower than VCC, and max
2	EXT output	output current is 300mA.
	OOMB . I. I	A voltage supply for ACC block this outout voltage is approximately
2	COMP output	0.7V lower than VDD'S. The max output current is 100mA.
4	ACC	Control of the COMP output by inputting voltage.
		This output voltage is 5.7V, and max output current is 100mA.
5	VDD output	This voltage supply is for microcomputer. Whenever block up voltage
	·	supply is connected. the output keeps on running.
		This output voltage is 9.0V, and max output current is 500mA.
6	AUDIO output	This voltage supply for AUDIO.
7	CD contract	This output voltage is 8.0V, and max output current is 1A.
7	CD output	This voltage supply for CD.
8	CTRL	Output selector of CD, AUDIO,ILM and EXT.
9	VCC	To be connected with the BACK UP of car.
10	ILM output	This output voltage is 10V, and max output current is 500mA.
	iLivi output	Output voltage is adjustable.
		Putting a resistance between ILM and AJ or between AJ and GND
11	AJ	makes ILM output voltage adjustable.
12	GND	Ground.

■ LB1641 (IC402) : DC motor driver

1. Pin layout

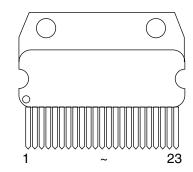


2. Pin function

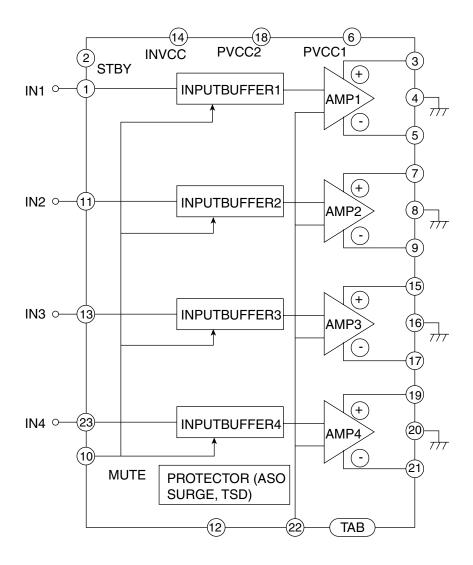
Inp	Input		Output Mode	
IN1	IN2	OUT1	OUT2	Wode
0	0	0	0	Brake
1	0	1	0	CLOCKWISE
0	1	0	1	COUNTER-CLOCKWISE
1	1	0	0	Brake

■ CXA2560Q (IC401): Dolby B type noise reduction system with play back equalizer amp.

1.Pin layout & block diagram

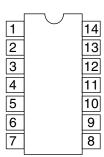

2. Pin function

Pin No.	Symbol	I/O	Function
1	PBTC1	-	Playback equalizer amplifier
			capacitance
2	PBOUT1	0	Playback equalizer amplifier
			output
3	OUTREF1	0	Output reference
4	TAPEIN1	ı	TAPE input
5	Vcc	-	Power supply
6	NC	-	
7	LINEOUT1	0	Line output
8	TCH1	-	Time constant for the HLS
9	NC	-	
10	MSLPF	-	Cut-off frequency adjustment
			of the music sensor LPF
11	G2FB	-	Music signal interval detection
12	G1FB	-	Music signal interval detection
13	MSTC	-	Time constant for detecting
			music signal interval
14	MSOUT	0	Music sensor out
15	NC	-	No use
16	NRSW	ı	Dolby NR control
17	MUTESW	ı	Mute function control
18	TAPESW	ı	Playback equalizer amplifier
			control
19	DRSW	ı	Head select control
20	MSMODE	ı	Music sensor mode control
21	MSSW	I	Music sensor control
22	NC	-	
23	TCH2	-	Time constant for the HLS
24	LINEOUT2	0	Line output


Pin No.	Symbol	I/O	Function
25	DIREF	-	Resistance for setting the
			reference
26	GND	-	Ground
27	TAPEIN2	ı	TAPE input
28	OUTREF2	0	Output reference
29	PBOUT2	0	Playback equalizer amplifier
			output
30	PBTC2	-	Playback equalizer amplifier
			capacitance
31	PBFB2	I	Playback equalizer amplifier
			feedback
32	PBRIN2	1	Playback equalizer amplifier
			input
33	PBGND	-	Playback equalizer amplifier
			ground
34	PBFIN2	ı	Playback equalizer amplifier
			input
35	VCT	0	Center
36	PBREF	0	Playback equalizer amplifier
			reference
37	PBFIN1	ı	Playback equalizer amplifier
			input
38	PBGND	-	Playback equalizer amplifier
			ground
39	PBRIN1	ı	Playback equalizer amplifier
			input
40	PBFB1	ı	Playback equalizer amplifier
			feedback

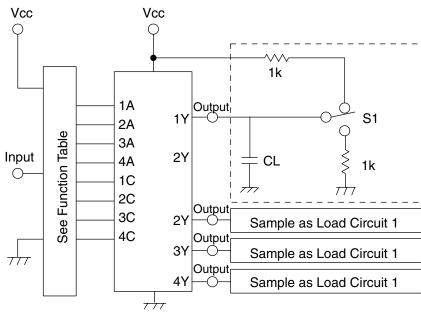
■ HA13158A (IC301) : Power amp

1. Pin layout

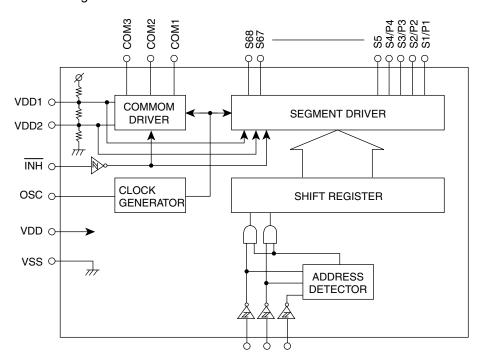


2. Block diagram

■ HD74HC126FP-X (IC801) : Buffer


1.Pin layout

2.Pin function


Inp	ut	Outout
С	Α	Υ
L	Χ	Z
Н	L	Н
Н	Н	L

3.Block diagram

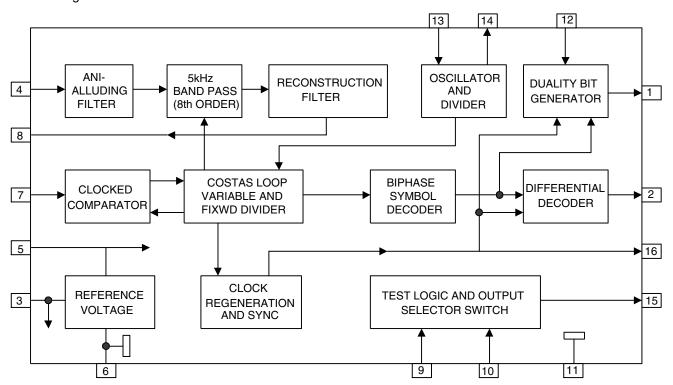
■ LC75873NW (IC601) : LCD driver

1.Block Diagram

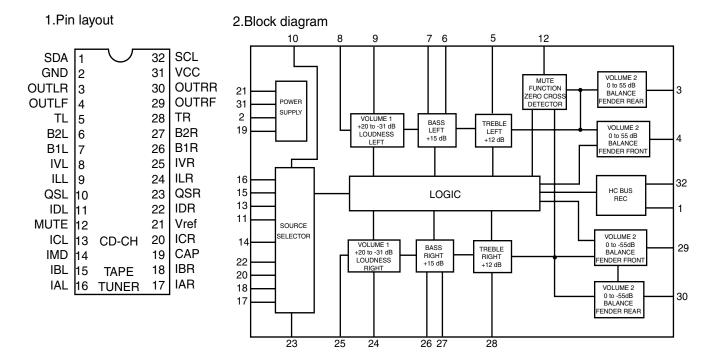
2.Pin Functions

Pin No.	Symbol	I/O	Description
1~66	S3~S68	0	Segment Output.
67~69	COM1~3	0	Common Driver Output.
70	VDD	-	Power Supply Connection.
71	VDD1	I	Used for applying the LCD drive 2/3 bias voltage externally.
			Must be connected to VDD2 when a 1/2 bias drive scheme in used.
72	VDD2	I	Used for applying the LCD drive 1/3 bias voltage externally.
			Must be connected to VDD1 when a 1/2 bias drive scheme in used.
73	VSS	-	Power supply connection.
74	osc	I/O	Oscillator connection. An oscillator circuit is formed by connecting an
			external resistor and capacitor to this pin.
75	INH	I	Display off control input.
76	CE	I	Chip enable input.
77	CLOCK	I	Synchronization clock input.
78	DI	I	Serial data input.
79	DIMMER	0	DIMMER Control signal output.
80	NC	-	Non connect.

■ SAA6579T-X(IC71):RDS detector


1.Terminal Layout

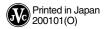
QUAL 16 **RDCL** RDDA 2 15 T75 Vref 3 14 OSCO MUX 4 13 OSC1 VDDA 5 12 VDD **GND** 6 11 **GND** CIN 7 10 **TEST** SCOUT 8 9 MODE


2.Pin Function

Pin No.	Symbol	I/O	Function	
1	QUAL	-	Non connect	
2	RDDA	0	RDS data output	
3	Vref	0	Reference voltage output	
4	MUX	Ι	Multiplex signal input	
5	VDDA	ı	+5V Supply voltage for analog	
6	GND	-	Ground for analog part (0V)	
7	CIN	I	Sub carrier output of reconstruction filter	
8	SCOUT	0	Ground for digital part (0V)	
9	MODE	-	Ground for digital part (0V)	
10	TEST	-	Ground for digital part (0V)	
11	GND	-	Ground for digital part (0V)	
12	VDD	-	+5V supply voltage for digital part	
13	OSC1	I	Oscillator input	
14	OSC0	0	Oscillator output	
15	T75	-	Non connect	
16	RDCL	0	RDS clock output	

3.Block Diagram

■ TEA6320T-X (IC161) : E.volume



3.Pin functions

Pin No.	Symbol	I/O	Functions		Symbol	I/O	Functions
1	SDA	I/O	Serial data input/output.		IAR	I	Input A right source.
2	GND	-	Ground.		IBR	I	Input B right source.
3	OUTLR	0	output left rear.		CAP	-	Electronic filtering for supply.
4	OUTLF	0	output left front.		ICR	I	Input C right source.
5	TL	ı	Treble control capacitor left channel or input from an external equalizer.		Vref	-	Reference voltage (0.5Vcc)
6	B2L	-	Bass control capacitor left channel or output to an external equalizer.		IDR	-	Not used
7	B1L	•	Bass control capacitor left channel.	23	QSR	0	Output source selector right channel.
8	IVL	I	Input volume 1. left control part.	24	ILR	I	Input loudness right channel.
9	ILL	I	Input loudness. left control part.		IVR	I	Input volume 1. right control part.
10	QSL	0	Output source selector. left channel.		B1R	-	Bass control capacitor right channel
11	IDL	-	Not used		B2R	0	Bass control capacitor right channel or output to an external equalizer.
12	MUTE	-	Not used		TR	I	Treble control capacitor right channel or input from an external equalizer.
13	ICL	I	Input C left source.		OUTRF	0	Output right front.
14	IMO	-	Not used	30	OUTRR	0	Output right rear.
15	IBL	ı	Input B left source.		Vcc	-	Supply voltage.
16	IAL	ı	Input A left source.		SCL	I	Serial clock input.

 ${\tt PERSONAL~\&~MOBILE~NETWORK~BUSINESS~UNIT.~10-1,1Chome,Ohwatari-machi,Maebashi-city,Japan}$

